Chapter 2 - Limits and Continuity

2.1 Rates of Change and Limits

recall: A moving body's average speed during an interval of time is found by dividing the distance covered by the elapsed time. The unit of measure is length per unit of time (i.e. ft per sec, km per hour, etc...)
ex. A rock breaks loose from the top of a tall cliff. What is the average speed during the first 2 seconds of fall?

Experiments show that dense objects dropped from rest (not moving) to falling freely near the surface of the Earth will fall $y=16 t^{2}$ feet in the first t seconds. Therefore, the average speed of the rock over any given interval is the distance traveled (Δy), divided by the length of time (Δt)

$$
\frac{\Delta y}{\Delta t}=\frac{y_{2}-y_{1}}{t_{2}-t_{1}}=\frac{16(2)^{2}-16(0)^{2}}{2-0}=\frac{64-0}{2}=32 \frac{\mathrm{ft}}{\mathrm{sec}}
$$

Suppose we wanted to know the exact speed of the rock AT TIME $t=2$ seconds (NOT THE AVERAGE).

Suppose we let h represent the amount of time after 2 seconds. Then, the later time would be written as $t=2+h$. Therefore, the average speed would be:

$$
\frac{\Delta y}{\Delta t}=\frac{16(2+h)^{2}-16(2)^{2}}{2+h-2}=\frac{16(2+h)^{2}-16(2)^{2}}{h}
$$

To find the exact speed at $t=2$, we would need to make h as small as possible without being 0 . Why?

Because the denominator cannot be 0 in a fraction

We could use some values of h and see what happens as h gets smaller and smaller:

Length of time interval h	Average Speed for the interval $\frac{\Delta y}{\Delta t}=\frac{16(2+h)^{2}-16(2)^{2}}{h}$
1	80
0.1	65.6
0.01	64.16
0.001	64.016
0.0001	64.0016
0.00001	64.00016

As you can see, as h gets closer and closer to 0 , the average speed is getting closer to $\quad 64 _\frac{f t}{\sec }$ We refer to this value as a limiting value as h approaches 0 .

We can confirm this using algebra:

Simplify: $\frac{16(2+h)^{2}-16(2)^{2}}{h}$
$\frac{16\left(4+4 h+h^{2}\right)-64}{h}=\frac{64+64 h+16 h^{2}-64}{h}=\frac{64 h+16 h^{2}}{h}=\frac{16 h(4+h)}{h}$
$=\frac{16(4+h)}{1}=64+16 h$
As h gets closer and closer to $0: 16 h$ also approaches $0 \ldots$ therefore $64+16 h$ approaches 64

We can say that the original expression $\frac{16(2+h)^{2}-16(2)^{2}}{h}$ and the result are equivalent because we say that $h \neq 0$, it simply gets closer and closer to 0 , but never gets to 0 , so the resulting expression is equivalent to the original.

Ex. Given $f(x)=\frac{\sin x}{x}$
What is the domain? $\quad x \neq 0$

Below is a graph of the function

Here is a table of values for $f(x)$

as x approaches $0, f(x)$ approaches 1

What does the graph show at $x=0$?
It is crossing the y-axis at $y=1$
You can't see because of the axis, but there is a hole at the point $(0,1)$
We cannot eliminate the x like we did h in the previous example using algebra (for now at least).

Def: Limit

A limit is a way to describe how a function behaves as the independent variable (usually x) moves closer to a certain value.

Notation: $\lim _{x \rightarrow c} f(x)=L$

The answer to a limit is ALWAYS the y-coord of the point!!!

This is read:
"The limit of f of x as x approaches c is L "
As x gets closer and closer to c, the y value will get closer and closer to L (approaches L)
In both cases, x does not equal c nor does y equal L. They approach them (get infinitely close to them, but are never exactly equal to them)

Going back to an example: $\lim _{h \rightarrow 0} \frac{16(2+h)^{2}-16(2)^{2}}{h}=\lim _{h \rightarrow 0}(64+16 h)=64$

Using the next example and the chart, we get $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.

$$
g(x)=\left\{\begin{array}{r}
\frac{x^{2}-1}{x-1}, x \neq 1 \\
1, x=1
\end{array}\right.
$$

The three graphs here show that the existence of a limit as $x \rightarrow c$ never depends on how the function may or may not be defined at c.

As $x \rightarrow 1$:
f approaches 2 even though f is undefined at 1
g approaches 2 even though $f(1)=1$
h approaches 2 (the only one of the three functions whose limit at $x=1$ is the same as its value at 1

In other words:

It does not matter if there is a hole in the graph. The function is approaching the hole is all that matters.

That is why both f and g approach 2 as x approaches 1
$\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$

1. $\lim _{x \rightarrow c}(k)=k \quad-$ The limit of a constant is equal to the constant.
2. $\lim _{x \rightarrow c}(x)=c \quad-$ The limit of the identity function $(y=x)$ at $x=c$
3. Sum Rule: $\lim _{x \rightarrow c}(f(x)+g(x))=L+M$ - The limit of a sum is the sum of their limits
4. Difference Rule: $\lim _{x \rightarrow c}(f(x)-g(x))=L-M$ - The limit of a difference is the difference of their limits
5. Product Rule: $\lim _{x \rightarrow c}(f(x) \cdot g(x))=L \cdot M$ - The limit of a product is the product of their limits
6. Constant Product Rule: $\lim _{x \rightarrow c}(k \cdot f(x))=k \cdot L$ - The limit of a constant times a function is the constant times the limit of the function
7. Quotient Rule: $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}, M \neq 0$ - The limit of a quotient is the quotient of their limits
8. Power Rule: If r and s are integers, $s \neq 0$, then

$$
\lim _{x \rightarrow c}(f(x))^{\frac{t}{s}}=L^{\frac{t}{s}} \text { provided that } L^{\frac{t}{s}} \text { is a real number }
$$

The limit of a rational power of a function is the power of the limit of the function, provided the latter is a real number.
Examples: Evaluate each of the following

1. $\lim _{x \rightarrow 5} 3=3$ (Rule 1)
2. $\lim _{x \rightarrow 5} x=5 \quad$ (Rule 2)
3. $\lim _{x \rightarrow 5}(x-4)=\lim _{x \rightarrow 5} x+\lim _{x \rightarrow 5} 4=5+4=9$

What do you notice?????

Just plug the value in for x to get the value of the limit!!!!!!

All these rules simply allow you to plug in for x.
4. $\lim _{x \rightarrow 5}(x-4)=\lim _{x \rightarrow 5} x-\lim _{x \rightarrow 5} 4=5-4=1$
5. $\lim _{x \rightarrow 2} 6 x=\lim _{x \rightarrow 2} 6 \cdot \lim _{x \rightarrow 2} x=6(2)=12 \quad$ (Rule 5 or 6)
6. $\lim _{x \rightarrow 2} x(x+5)=\lim _{x \rightarrow 2} x \cdot \lim _{x \rightarrow 2} x+5=2\left(\lim _{x \rightarrow 2} x+\lim _{x \rightarrow 2} 5\right)=2(2+5)=2(7)=14$
7. $\lim _{x \rightarrow 2}\left(\frac{x}{x+1}\right)=\frac{\lim _{x \rightarrow 2} x}{\lim _{x \rightarrow 2} x+1}=\frac{2}{\lim _{x \rightarrow 2} x+{ }_{x \rightarrow 2}^{1} 1}=\frac{2}{2+1}=\frac{2}{3}$
8. $\lim _{x \rightarrow 2} x^{2}=\left(\lim _{x \rightarrow 2} x\right)^{2}=2^{2}=4$

2.1 Rates of Change and Limits (con't)
 Limits of Polynomial and Rational Functions

Theorem: Polynomial and Rational Functions

1. If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ is any polynomial function and c is any real number, then

$$
\lim _{x \rightarrow c} f(x)=f(c)=a_{n} c^{n}+a_{n-1} c^{n-1}+\ldots+a_{1} c+a_{0}
$$

2. If $f(x)$ and $g(x)$ are polynomials and c is any real number, then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{f(c)}{g(c)}, \text { provided that } g(c) \neq 0
$$

ex.
(a) $\lim _{x \rightarrow 3^{-}}\left[x^{2}(2-x)\right]=3^{2}(2-3)=9(-1)=-9$
(b) $\lim _{x \rightarrow 2} \frac{x^{2}+2 x+4}{x+2}=\frac{2^{2}+2(2)+4}{2+2}=\frac{4+4+4}{4}=3$
ex. Determine $\lim _{x \rightarrow 0} \frac{\tan x}{x}$
To the right is the graph of the function
So by the graph: the answer is 1

Algebraically:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan x}{x} & =\lim _{x \rightarrow 0} \frac{1}{x} \tan x \\
& =\lim _{x \rightarrow 0} \frac{1}{x} \cdot \frac{\sin x}{\cos x}
\end{aligned}
$$

$$
=\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x}
$$

$$
=\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \lim _{x \rightarrow 0} \frac{1}{\cos x}
$$

$$
=1 \cdot \frac{1}{\cos 0}=1 \cdot \frac{1}{1}=1
$$

ex. Show that $\lim _{x \rightarrow 2} \frac{x^{3}-1}{x-2} \underline{\text { does not exist. }}$
Graphically, the function $f(x)=\frac{x^{3}-1}{x-2}$ looks like this:

Note: since the denominator is $x-2$, when we substitute 2 in, it would make the fraction undefined.

Using the graph:
$>$ Looking at the graph, there does not appear to a particular value that the graph is approaching.

- as we approach 2 from the left side $(1.9,1.99,1.999, \ldots)$, the graph appears to move more negative (approaches $-\infty$).
- We write a limit as we approach c from the left side:

$$
\lim _{x \rightarrow c^{-}} f(x)
$$

- We call this a left-handed limit
- as we approach 2 from the right side (i.e. 2.1, $2.01,2.001, \ldots$), the graph gets larger and larger (approaches $+\infty$).
- We write a limit as we approach c from the right hang side:

$$
\lim _{x \rightarrow c^{+}} f(x)
$$

- We call this a right-handed limit

Theorem: One-sided and Two-sided Limits
A function $f(x)$ has a limit as x approaches c iff ("if and only if") the right-hand and lefthand limits at c exist and are equal.

Symbolically: $\lim _{x \rightarrow \mathrm{c}} f(x)=L \Leftrightarrow \lim _{x \rightarrow c^{-}} f(x)=L$ and $\lim _{x \rightarrow \mathrm{c}^{+}} f(x)=L$
Therefore, in order for $\lim _{x \rightarrow c} f(x)$ to exist: it must have equal limits from the left and right sides.

Ex. Use the graph to the right to answer the following questions:
The function is defined:
$f(x)= \begin{cases}-x+1, & 0 \leq x<1 \\ 1, & 1 \leq x<2 \\ 2, & x=2 \\ x-1, & 2<x \leq 3 \\ -x+5, & 3<x \leq 4\end{cases}$
(a) $\lim _{x \rightarrow 1} f(x)$
(b) $\lim _{x \rightarrow 2^{-}} f(x)$
(c) $\lim _{x \rightarrow 2^{+}} f(x)$
(d) $\lim _{x \rightarrow 2} f(x)$
(e) $\lim _{x \rightarrow 3} f(x)$

With any problem like this: Follow the "curve" left and right of the limit value for x :
(a) Left approaches $y=0$, right approaches $y=1 \rightarrow$ DNE (see arrows)
(b) Approaching 2 from left, it approaches the hole: ans = 1
(c) Approaching 2 from right, it approaches the hole; ans $=1$
(d) Since (b) and (c) are both 1 , the limit exists: ANS $=1$
(e) Left approaches $y=2$, right approaches $y=2$, therefore 2 (see arrows on graph)

FOLLOW THE CURVE!!!!!

Sandwich Theorem:

$>$ If we cannot find a limit directly, we can find it indirectly using the Sandwich Theorem

- If a function f has values that are between two other functions g and h (in other words: sandwiched between) and g and h have the same limit as $x \rightarrow c$, then f has the same limit as well.

Theorem: The Sandwich Theorem

If $g(x) \leq f(x) \leq h(x)$ for all $x \neq c$ in some interval about c, and $\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L$, then $\lim _{x \rightarrow c} f(x)=L$

Best shown with an example
ex. Show $\lim _{x \rightarrow 0}\left[x^{2} \sin \left(\frac{1}{x}\right)\right]=0$
$x \varepsilon(-0.3,0.3) \quad y \varepsilon(-0.03,0.03)$

The graph to the right depict the graph of $f(x)=x^{2} \sin \left(\frac{1}{x}\right)$ (the solid graph)

The dotted curve is $y=x^{2}$ and the dashed curve is $y=-x^{2}$. Notice that that $f(x)$ is between the other two curves throughout the interval.

We also know that the value of the sine is always between -1 and 1 , so

$$
\begin{aligned}
& \left|x^{2} \sin \left(\frac{1}{x}\right)\right|=\left|x^{2}\right| \cdot\left|\sin \left(\frac{1}{x}\right)\right| \leq\left|x^{2}\right| \cdot 1 \\
& \left|x^{2}\right| \cdot\left|\sin \left(\frac{1}{x}\right)\right| \leq x^{2}
\end{aligned}
$$

Therefore: $-x^{2} \leq\left|x^{2}\right| \cdot\left|\sin \left(\frac{1}{x}\right)\right| \leq x^{2}$
Now, $\lim _{x \rightarrow 0}-x^{2}=0$ and $\lim _{x \rightarrow 0} x^{2}=0$.
By the Sandwich Theorem, $\lim _{x \rightarrow 0}\left[x^{2} \sin \left(\frac{1}{x}\right)\right]=0$

Proof of $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

The solid graph to the right shows $f(x)=\frac{\sin x}{x}$. Two other functions $g(x)=\cos x$ and $h(x)=1$ are two functions in which $f(x)$ is between. Since $\lim _{x \rightarrow 0} \cos x=1$ and $\lim _{x \rightarrow 0} 1=1$, then by the Sandwich Theorem, it shows that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

2.1c More with Limits

Theorem: The Limit of a Function Involving a Radical

Let n be a positive integer. The following limit is valid for all c if n is odd, and is valid for $c>0$ if n is even.

$$
\lim _{x \rightarrow c} \sqrt[n]{x}=\sqrt[n]{c}
$$

Theorem: The Limit of a Composite Function

If f and g are functions such that $\lim _{x \rightarrow c} g(x)=L$ and $\lim _{x \rightarrow L} f(x)=f(L)$, then

$$
\lim _{x \rightarrow c} f(g(x))=f(L)
$$

ex. Find $\lim _{x \rightarrow 0} \sqrt{x^{2}+4}$
$\sqrt{x^{2}+4}$ is a composite of two functions $f(x)=\sqrt{x}$ and $g(x)=x^{2}+4$, therefore $\lim _{x \rightarrow 0} \sqrt{x^{2}+4}$ can be found in this method:

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left(x^{2}+4\right)=0^{2}+4=4 \\
& \lim _{x \rightarrow 4} \sqrt{x}=\sqrt{4}=2
\end{aligned}
$$

Theorem: Limits of Trig Functions

Let c be a real number in the domain of the given trigonometric function

1. $\lim _{x \rightarrow c} \sin x=\sin c$
2. $\lim _{x \rightarrow c} \cos x=\cos c$
3. $\lim _{x \rightarrow c} \tan x=\tan c$
4. $\lim _{x \rightarrow c} \csc x=\csc c$
5. $\lim _{x \rightarrow c} \sec x=\sec c$
6. $\lim _{x \rightarrow c} \cot x=\cot c$
ex. Evaluate
7. $\lim _{x \rightarrow 0} \tan x=\tan 0=0$
8. $\lim _{x \rightarrow \pi}(x \cos x)=\pi \cos \pi=\pi(-1)=-\pi$
9. $\lim _{x \rightarrow 0} \sin ^{2} x=\sin ^{2} 0=0^{2}=0$

Strategies for Finding Limits

So far most limits you have done can be done with direct substitution, but suppose you end up with something rather odd.....

Ex. Find $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$
By substitution, this limit turns out to be $\frac{0}{0}!!!\quad \frac{1^{3}-1}{1-1}=\frac{1-1}{0}=\frac{0}{0}$
This is a tell-tale sign that something can be done.

Theorem: Functions That Agree at All But One Point

Let c be a real number and let $f(x)=g(x)$ for all $x \neq c$ in an open interval containing c. If the limit of $g(x)$ as x approaches c exists, then the limit of $f(x)$ also exists and

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)
$$

This theorem allows you to factor and cancel. $\frac{0}{0}$
Ex. Find $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$

Since $x \neq 1$, the $x-1$ will cancel. Since we are doing the limit as $x \rightarrow 1, x$ will never be 1 , so we can cancel $x-1$

A Strategy to find $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$:

1) First attempt a straight substitution into the expression.
2) If that results in a " $\frac{0}{0}$ ", try and see if the numerator and denominator will factor using a common factor $(x-c)$.
a) If it works out that there is, then you can cancel the common factors and use the theorem above.
b) If it does not work out, then it is a good bet that there is no limit (does not exist)
3) If a radical is involved in the expression, rationalize the expression
4) Careful with trig functions
5) Use a graph or a table as a last resort.

Rationalization Technique - Use with RADICALS

ex. Find $\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}$

Solution:

ALWAYS do first!! Direct Substitution: $\frac{0}{0}$ And it is not factorable.
But a radical is involved.
Multiply the top and bottom by the coniugate of the top (" 1 " in disguise)

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x} \cdot \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}=\lim _{x \rightarrow 0} \frac{(x+1)-1}{x(\sqrt{x+1}+1)}=\lim _{x \rightarrow 0} \frac{\Delta x}{x(\sqrt{x+1}+1)}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+1}+1}=\frac{1}{1+1}=\frac{1}{2}
$$

ex. Find

$$
\begin{array}{ll}
\text { 1. } \lim _{x \rightarrow 0} \frac{\sqrt{x+3}-\sqrt{3}}{x} & \text { 2. } \lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3} \\
\lim _{x \rightarrow 0} \frac{\sqrt{x+3}-\sqrt{3}}{x} \cdot \frac{\sqrt{x+3}+\sqrt{3}}{\sqrt{x+3}+\sqrt{3}} & \lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3} \cdot \frac{\sqrt{x+1}+2}{\sqrt{x+1}+2} \\
\lim _{x \rightarrow 0} \frac{x+3-3}{x(\sqrt{x+3}+\sqrt{3})} & \lim _{x \rightarrow 3} \frac{x+1-4}{(x-3)(\sqrt{x+1}+2)}
\end{array}
$$

$$
\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+3}+\sqrt{3})}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+3}+\sqrt{3}}=\frac{1}{\sqrt{3}+\sqrt{3}}
$$

$$
\frac{1}{2 \sqrt{3}}
$$

3. $\lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}$

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\sin \theta / \cos \theta}{\theta} \cdot \frac{\cos \theta}{\cos \theta} \\
& \lim _{\theta \rightarrow 0}\left(\frac{\sin \theta}{\theta \cos \theta}\right)=\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \cdot \frac{1}{\cos \theta} \\
& \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \cdot \lim _{\theta \rightarrow 0} \frac{1}{\cos \theta} \\
& 1 \cdot \frac{1}{\cos 0}=1 \cdot \frac{1}{1}=1
\end{aligned}
$$

$\lim _{x \rightarrow 3} \frac{x-3}{(x-3)(\sqrt{x+1}+2)}=\lim _{x \rightarrow 3} \frac{1}{\sqrt{x+1}+2}=\frac{1}{\sqrt{4}+2}$
$\frac{1}{2(2)}=\frac{1}{4}$
4. $\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}$
$\lim _{x \rightarrow 0} \frac{\sin 2(2 x)}{x}=\lim _{x \rightarrow 0} \frac{2 \sin 2 x \cos 2 x}{x}$
$\lim _{x \rightarrow 0} \frac{2 \cdot 2 \sin x \cos x \cos 2 x}{x}$
$\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{4 \cos x \cos 2 x}{1}$
$\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \lim _{x \rightarrow 0} 4 \cos x \cos 2 x$
$1 \cdot 4 \cos 0 \cos 0=1 \cdot 4 \cdot 1 \cdot 1=4$

2.2 Limits Involving Infinity

$>$ The symbol for infinity (∞) does not represent a real number

- We use ∞ to describe the behavior of a function
- Used when the domain or range "outgrow" all finite bounds
- $\lim _{x \rightarrow \infty} f(x)$ means "the limit of f as x approaches infinity
- as x moves increasingly far to the right on the number line
- as " $x \rightarrow-\infty$ " means as x moves increasingly far to the left on the number line.
- In these cases, the limit may or may not exist.

Ex. Find 1. $\lim _{x \rightarrow \infty} \frac{1}{x}$ as x gets bigger and bigger, $\frac{1}{x}$ gets smaller and smaller to $0 \Rightarrow 0$
2. $\lim _{x \rightarrow-\infty} \frac{1}{x}$ as x more negative, $\frac{1}{x}$ gets closer to $0 \rightarrow 0$

Since both of these limits result in the same value, we say that the line $y=0$ is a horizontal asymptote of a function.

Def: The line $y=b$ is a horizontal asymptote of the graph of $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=b \text { or } \lim _{x \rightarrow-\infty} f(x)=b
$$

ex. Find the horizontal asymptote for $f(x)$

1. $f(x)=2+\frac{1}{x}$
$\begin{array}{ll}y=\lim _{x \rightarrow \infty} 2+\frac{1}{x}=2+0=2 & y=2 \\ y=\lim _{x \rightarrow-\infty} 2+\frac{1}{x}=2+0=2 & y=2\end{array}$
2. $f(x)=\frac{x}{\sqrt{x^{2}+1}}$ (hint: make a table)

$y=1$

$y=-1$

Def: The line $x=a$ is a vertical asymptote of the graph of $y=f(x)$ if either

$$
\lim _{x \rightarrow a^{+}} f(x)= \pm \infty \text { or } \lim _{x \rightarrow a^{-}} f(x)= \pm \infty
$$

To find a vertical asymptote:

1. Determine the domain (look for values x can not be)
2. Take the limit as x approaches these values and if the limit is $\pm \infty$, then it is an asymptote.

Ex. Find $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$

Here is a table of values

The graph of the function $y=\frac{\sin x}{x}$

As you can see, as $x \rightarrow \infty$, the value of y gets closer and closer to 0 .
Analytical Solution:

We know that $-1 \leq \sin x \leq 1$, so for $x>0$, we have:

$$
-\frac{1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x}
$$

By the Sandwich Theorem: $0=\lim _{x \rightarrow \infty}\left(-\frac{1}{x}\right)=\lim _{x \rightarrow \infty} \frac{\sin x}{x}=\lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)$. Since $\frac{\sin x}{x}$ is an even function, we can also conclude that $\lim _{x \rightarrow-\infty} \frac{\sin x}{x}=0$

Theorem: Properties of Limits as $x \rightarrow \pm \infty$
If L, M, and k are real numbers and

$$
\lim _{x \rightarrow \pm \infty} f(x)=L \text { and } \lim _{x \rightarrow \pm \infty} g(x)=M \text {, then }
$$

1. Sum Rule: $\lim _{x \rightarrow \pm \infty}(f(x)+g(x))=L+M$
2. Difference Rule: $\lim _{x \rightarrow \pm \infty}(f(x)-g(x))=L-M$
3. Product Rule: $\lim _{x \rightarrow \pm \infty}(f(x) \cdot g(x))=L \cdot M$
4. Constant Product Rule: $\lim _{x \rightarrow \pm \infty}(k \cdot f(x))=k \cdot L$
5. Quotient Rule: $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=\frac{L}{M}, M \neq 0$
6. Power Rule: If r and s are integers, $s \neq 0$, then

$$
\lim _{x \rightarrow \pm \infty}(f(x))^{\frac{r}{s}}=L^{\frac{r}{s}} \text { provided that } L^{\frac{r}{s}} \text { is a real number }
$$

ex. Find $\lim _{x \rightarrow \infty} \frac{5 x+\sin x}{x}=\lim _{x \rightarrow \infty} \frac{5 x}{x}+\lim _{x \rightarrow \infty} \frac{\sin x}{x}=5+0=5$

Strategy: If $f(x)$ and $g(x)$ are polynomial functions, then

1. $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$, if the degree of $f(x)<$ degree of $g(x)$

So simply look at the highest exponent in the top and the bottom.

- In the top: $\pm \infty$ (careful of degrees and \pm

2. $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\infty$, if the degree of $f(x)>$ degree of $g(x)$ - $\begin{aligned} & \text { - In the bottom: } \mathbf{0} \\ & \text { Same top/bottom: } \frac{a}{b}\end{aligned}$
3. $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\frac{a}{b}$, if the degrees of f and g are the same and a and b are the leading coefficients

Alternate Approach: Divide every term by the variable to the HIGHEST exponent and cancel accordingly. Any term with a variable in the bottom cancels to 0 (goes away).
ex. Find

1. $\lim _{x \rightarrow \infty} \frac{4 x^{3}-3 x+4}{3 x^{5}-3 x+1}=0$
2. $\lim _{x \rightarrow \infty} \frac{6 x^{2}-3 x+7}{2 x^{2}-8}=\frac{6}{2}=3$
3. $\lim _{x \rightarrow \infty} \frac{x^{3}}{2 x}=\infty$
4. $\lim _{x \rightarrow \infty} \frac{4 x-5 x^{2}}{10 x^{2}-1}=-\frac{5}{10}=-\frac{1}{2}$

End Behavior Models

- For large values of x (positive or negative), we can sometimes model the behavior of a complicated function by a simpler one.

Def: The function g is

- a right end behavior model for f if and only if $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1$
- a left end behavior model for f if and only if $\lim _{x \rightarrow-\infty} \frac{f(x)}{g(x)}=1$

A function's right and left behavior model need not be the same function
Ex. Suppose $f(x)=3 x^{4}-2 x^{3}-5 x+6 . g(x)=3 x^{4}$, though considerably different from $f(x)$ with smaller values of x, are virtually identical for large values of x.

Look at the graphs below of the two functions

Both of these graphs represent $f(x)$ and $g(x)$. Note the differences with the graph on the left, but they look almost identical when expanded out to the graph on the right.

Analytically...
$\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \pm \infty} \frac{3 x^{4}-2 x^{3}+3 x^{2}-5 x+6}{3 x^{4}}=\lim _{x \rightarrow \pm \infty}\left(1-\frac{2^{4}}{3 x}+\frac{f^{4}}{x^{2}}-\frac{5^{4}}{3 x^{3}}+\frac{2^{4}}{x^{4}}=1\right)$

To find End Behavior Models: For $h(x)=\frac{f(x)}{g(x)}$

1. Write the leading term for f and g as a fraction
2. Simplify the fraction for the end behavior

Ex. Find the end behavior model for
(a) $f(x)=\frac{4 x^{5}+3 x^{3}-2 x+6}{2 x^{2}-6 x+8} \quad$ Approaches $y=\frac{4 x^{5}}{2 x^{2}} \rightarrow \quad y=2 x^{3}$
(b) $g(x)=\frac{2 x^{3}-x^{2}+x-1}{5 x^{3}+x^{2}+x-5} \quad$ Approaches $y=\frac{2 x^{3}}{5 x^{3}} \rightarrow \quad y=\frac{2}{5}$
ex. Does the graph of $f(x)=\frac{4 x^{2}-3 x+5}{2 x^{3}+x-1}$ have a horizontal asymptote? If so, what is it?

$$
\begin{array}{ll}
\lim _{x \rightarrow \infty} \frac{4 x^{2}-3 x+5}{2 x^{3}+x-1}=0 & \rightarrow \\
y=0 \\
\lim _{x \rightarrow-\infty} \frac{4 x^{2}-3 x+5}{2 x^{3}+x-1}=0 & \rightarrow \quad y=0
\end{array}
$$

Ex. Find $\lim _{x \rightarrow \infty} \sin \left(\frac{1}{x}\right)$
We can rewrite the limit using the reciprocal of $\frac{1}{x}$, but the limit has to change from $x \rightarrow \infty$, to $x \rightarrow 0^{+}$and $x \rightarrow 0^{-}$. The graph to the left is $f(x)=\sin \frac{1}{x}$ and to the right is $y=\sin x$

You can see how the limit approaches 0 using the graph on the right

2.3 Continuity

- In mathematics, the term continuous has much the same meaning as it has in everyday usage.
- To say a function is continuous at $x=c$ mean that there is not interruption in the graph of f at c .
- The graph is unbroken at c and there are no holes, jumps, gaps, etc...
- You can think that a function is continuous on an open interval if its graph can be drawn with a pencil without lifting it off the paper.
- Below are examples of functions that are not continuous

Figure A

Figure B

Figure C

- Figure A has a hole in it: $f(c)$ does not exist but the limit exists
- Figure B has a jump: $\lim _{x \rightarrow c} f(x)$ does not exist but $f(c)$ exists
- Figure C has a gap: $\lim _{x \rightarrow c} f(x) \neq f(c)$ both the limit and function exist but \neq

Def: Continuity at a Point

A function f is continuous at a point c if the following three conditions are met:

1. $f(c)$ exists
2. $\lim _{x \rightarrow c} f(x)$ exists
3. $\lim _{x \rightarrow c} f(x)=f(c)$

Continuity on an Open Interval: A function is continuous on an open interval (a, b) if it is continuous at each point in the interval.

A function that is continuous on the entire real number line $(-\infty, \infty)$ is $\underline{\text { everywhere }}$ continuous.

Continuity at an Endpoint

A function $y=f(x)$ is continuous at a left endpoint a or continuous at a right endpoint \boldsymbol{b} of its domain if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \text { or } \lim _{x \rightarrow b^{-}} f(x)=f(b) \text { respectively }
$$

- If a function is not continuous at a point $x=c$, then it is said to be discontinuous at $x=c$

Ex. Use the graph below to answer the following:

For what domain is the function continuous?
All values of x in the interval $[0,1) \cup[1,2) \cup(2,4]$
At what value(s) of x is the function discontinuous? Look for breaks in the function

Discontinuous at $x=1$ and $x=2$

- Discontinuous points fall into two categories:
- Removable - has a limit at $x=c$
- $f c$ an be made continuous by appropriately defining or redefining $f(c)$.
- In the graph above, if we redefine f at $x=2$, we can make the function continuous at $x=2$
- non-removable - HAS NO LIMIT (DNE) or is $\pm \infty$
- f can not be made continuous at $x=1$, since it would requiring redefining the function at several points
ex. Discuss the continuity of each of the following

1. $f(x)=\frac{1}{x}$

Fraction: set bottom=0 and solve. This will give you points of discontinuity: Discontinuous at $x=0$.
Take the limit as x approaches 0 from both sides.
$\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty$ and $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty \quad$ Non-removable
2. $g(x)=\frac{x^{2}-1}{x-1} \quad \begin{aligned} & \text { Fraction: set bottom }=0 \text { and solve. This will give you points of } \\ & \text { discontinuity: Discontinuous at } x=1 . \\ & \text { Take the limit as } x \text { approaches } 0 \text { from both sides. } \\ & \\ & \lim _{x \rightarrow 1} \frac{x^{2}+1}{x-1}=\lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{x-1}=\lim _{x \rightarrow 1}(x+1)=2 \text { Removable }\end{aligned}$
3. $h(x)= \begin{cases}x+1, x \leq 0 & \\ x^{2}+1, x>0 & \begin{array}{l}\text { Piecewise function. No fractions in each piece so look at the pivot points in } \\ \text { the piecewise }\end{array} \\ \qquad \lim _{x \rightarrow 0^{-}}(x+1)=1 \text { and } \lim _{x \rightarrow 0^{+}}\left(x^{2}+1\right)=1\end{cases}$

Continuous!
4. $y=\sin x$

The Greatest Integer Function, $y=\lfloor x\rfloor$ has the properties such that for every non-integer

Birthday Function: Think when someone asks how old are you? What do you answer? Do you answer 17.5? NO You answer 17

You always answer the integer value of your age value of x, y equals the largest integer less than or equal to x.

- Basically it always rounds down to the previous integer.
- On many graphing calculators and computers, this is the $\operatorname{int}(x)$ function

Ex.

$$
\begin{aligned}
& \lfloor 4.5\rfloor=4 \\
& \lfloor-1.4\rfloor=-2 \\
& \lfloor 5.999\rfloor=5 \\
& \lfloor 3\rfloor=3
\end{aligned}
$$

- A graph of the function is shown to the right
- For what values is the function discontinuous?

All integral values.
Discontinuous for all $x \in \boldsymbol{Z}$
Prove it algebraically at one of the values:

$$
\text { At } x=1: \underset{x \rightarrow 1^{-}}{\lim _{x \rightarrow}|x|=0} \quad \lim _{x \rightarrow 1^{+}}\lfloor x\rfloor=1
$$

Def: Continuous Functions

A function is a continuous function if and only if it is continuous at every point of its domain.

Note: A continuous function does not need to be continuous on every interval.
Ex. $y=\frac{1}{x}$
As you can see, the function is not continuous at $x=0$, but if you specify the domain such that 0 is not if the domain, then the function would be a continuous function (i.e. $[1,10]$)

- What functions are continuous (or where are they discontinuous?)?

- Polynomial functions are continuous at every real number c because $\lim _{x \rightarrow c} f(x)=f(c)$
- Rational functions, $f(x)=\frac{g(x)}{h(x)}$ are continuous at every point of their domain
- They are discontinuous at every point where $h(x)=0$
- The absolute value function $y=|x|$ is continuous at every real number
- The exponential functions, logarithmic functions, trig functions, and radical functions like $y=\sqrt[n]{x}$ are continuous at every point of their domains

Theorem: Properties of Continuous Functions

If the functions f and g are continuous at $x=c$, then the following combinations are also continuous at $x=c$:

1. Sum: $f+g$
2. Difference: $f-g$
3. Products $f \cdot g$
4. Constant Multiples: $k \cdot f$ for any number k
5. Quotients:
$f / g \operatorname{provided} g(c) \neq 0$

Composite Functions

- If f and g are continuous functions, then $(f \circ g)(x)$ or $f(g(x))$ is also a composite function.

Ex. $y=\sin \left(x^{2}\right)$ is a continuous function because $y=\sin x$ and $y=x^{2}$ are continuous functions

Ex. Is the function $y=|\cos x|$ a continuous function? Why or why not?

Ex. Show that $y=\left|\frac{x \sin x}{x^{2}+2}\right|$ is continuous
Solution: Break this function into two functions:

$$
y=|x| \text { and } y=\frac{x \sin x}{x^{2}+2}
$$

The absolute value function is continuous (shown earlier)
The other function is continuous according to \#5 of the above theorem ($x \sin x$ is continuous and $x^{2}+2$ is continuous, therefore their quotient is.

Therefore $y=\left|\frac{x \sin x}{x^{2}+2}\right|$ is continuous

Theorem: Intermediate Value Theorem for Continuous Functions

If f is continuous on the closed interval $[a, b]$ and k is any number between $f(a)$ and $f(b)$, then there is at least one number c in $[a, b]$ such that $f(c)=k$.

Basically, this theorem states that since it is a continuous function with no breaks, then the graph must contain all points between $f(a)$ and $f(b)$.

This theorem will allow you state there exists a point in the interval $[a, b]$ with a y value in the interval $[f(a), f(b)]$

Ex. Is there a real number exactly 1 less than its value cubed?
As an equation: $x=x^{3}-1$
Rewriting the equation: $x^{3}-x-1=0$
Using the IVT in the following manner: Using $f(x)=x^{3}-x-1$
At $x=0: f(0)=-1$
At $x=2: f(2)=5$$\quad 0$ is between -1 and 5 , so it must past thru 0
By the IVT, there must be an x in $[0,2]$ in which $f(x)=0$

2.4 Rates of Change and Tangent Lines

recall: The average rate of change of a quantity over a period of time is the amount of change divided by the time it takes.

Ex. Find the average rate of change of $f(x)=x^{3}-x$ over the interval $[-3,3]$.

Ex. Suppose an experiment counted the number of fruit flies over a period of time. 23 days into the experiment, there were 150 fruit flies and after 45 days, there were 260 fruit flies. What was the average rate of change?

Now, suppose the fruit fly counting problem resulted in a curved function below.

The two points when graphed form a secant.
Def: A secant is a line that intersects a curve in at least 2 points.

The slope of the secant here is $\frac{\Delta p}{\Delta t}$ which is the average rate of change of the number of flies.

Suppose we wanted to know the exact rate of change on day 23. If we backed the $2^{\text {nd }}$ point closer and closer to day 23 and found the slope, we would have a good indicator on the rate of change on day 23 (also called the instantaneous rate of change).

To the right is a table of the 4 secants as we go from 45 days back to 23 days:

\boldsymbol{Q}	Slope of $\boldsymbol{P Q}$
$(45,260)$	$(260-150) /(45-23)=5$
$(38,250)$	$(250-150) /(38-23)=$
	6.667
$(33,240)$	$(240-150) /(33-23)=9$

Eventually, the point will end up at P. The line that intersect the curve only at P would be called the tangent (the solid line with arrow pointing at it). The slope of this line would be the instantaneous rate of change of the curve at P. The slope is found using two points $A(9,0)$ and $B(32,250)$

As $Q \rightarrow P$, the average growin rates ior increasingıy smaner ume intervals approach the slope of the tangent to the curve at P. Therefore the slope of tangent line is the rate of change on day 23 .

Def: The rate of change of $y=f(x)$ at $x=a$ is the slope of the tangent line to the curve at $x=a$.
So how do you find a tangent to a curve $y=f(x)$?

Ex. Find the slope of the parabola $y=x^{2}$

- So, to find the tangent to a curve $y=f(x)$ at a point $(a, f(a))$, we use a similar procedure.

Def: Slope of a Curve at a Point
The slope of the curve $y=f(x)$ at a point $(a, f(a))$ is the number

$$
m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided the limit exists

- The tangent to the curve at P is the line through P with this slope

Ex. Let $f(x)=\frac{1}{x}$
(a) Find the slope of the curve at $x=a$.
(b) Where does the slope $=-\frac{1}{4}$?
(c) What happens to the tangent to the curve at $\left(a, \frac{1}{a}\right)$ for different values of a ?

Solution:
(a) $m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \bullet \frac{x(x+h)}{x(x+h)}=\lim _{h \rightarrow 0} \frac{x-(\not \subset+h)}{x h(x+h)}=\lim _{h \rightarrow 0} \frac{-h}{x^{h}(x+h)}=\lim _{h \rightarrow 0} \frac{-1}{x(x+h)}=-\frac{1}{x^{2}}$

$$
\text { at } x=a: m=-\frac{1}{a^{2}}
$$

(b)

$$
\begin{aligned}
-\frac{1}{a^{2}} & =-\frac{1}{4} \\
4 & =a^{2} \\
a & = \pm 2
\end{aligned}
$$

(c) As $a \rightarrow \pm \infty$, the slope approaches 0

Everything without an h will cancel in the top (ALWAYS!!!)

As $a \rightarrow 0^{-}$, the slope approaches $-\infty$
As $a \rightarrow 0^{+}$, the slope approaches $+\infty$

Def: The normal line to a curve at a point is the line perpendicular to the line tangent to the curve.

Ex. Write an equation of the normal to the curve $f(x)=4-x^{2}$ at $x=1$

Everything without an h will cancel in the top

Let $y=f(t)$ be the position function of an object in motion. Its instantaneous speed at any time t is the instantaneous rate of change of position with respect to time at t.

$$
\text { Speed }=\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}
$$

Everything without an h will cancel in the top

Ex. Find the speed of the rock falling if the position function is $f(x)=16 t^{2}$ at time $t=1$.

$$
\begin{aligned}
\text { Speed } & =\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h} & & =\lim _{h \rightarrow 0} \frac{16 t^{2}+32 t h+16 h^{2}-16 t^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{16(t+h)^{2}-16 t^{2}}{h} & & =\lim _{h \rightarrow 0} \frac{h(32 t+16 h)}{h} \\
& =\lim _{h \rightarrow 0} \frac{16\left(t^{2}+2 t h+h^{2}\right)-16 t^{2}}{h} & & =\lim _{h \rightarrow 0}(32 t+16 h)=32 t
\end{aligned}
$$

$$
\begin{aligned}
& m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(-2 x-h)}{h} \\
& =\lim _{h \rightarrow 0} \frac{4-(x+h)^{2}-\left(4-x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{4-\left(x^{2}+2 x h+h^{2}\right)-4+x^{2}}{h} \\
& \begin{array}{l}
\text { Using Point-Slo } \\
y-3=\frac{1}{2}(x-1)
\end{array} \\
& \text { At } x=a \text { : } \\
& m=-2(1)=-2 \\
& \text { Slope of Normal: } m_{\perp}=\frac{1}{2} \\
& \text { Using Point-Slope at }(1,3) \text { : } \\
& =\lim _{h \rightarrow 0}(-2 x-h)=-2 x \\
& \text { At } x=a \text { : } \\
& \text { Slope of Normal: } m_{\perp}=\frac{1}{2}
\end{aligned}
$$

2.4 Rates of Change and Tangent Lines

recall: The average rate of change of a quantity over a period of time is the amount of change divided by the time it takes.

Ex. Find the average rate of change of $f(x)=x^{3}-x$ over the interval $[-3,3]$.

$$
\frac{\Delta f}{\Delta t}=\frac{f(3)-f(-3)}{3--3}=\frac{24-(-24)}{6}=\frac{48}{6}=8
$$

Ex. Suppose an experiment counted the number of fruit flies over a period of time. 23 days into the experiment, there were 150 fruit flies and after 45 days, there were 260 fruit flies. What was the average rate of change?

$$
\frac{\Delta f}{\Delta t}=\frac{f(45)-f(23)}{45-23}=\frac{260-150}{45-23}=\frac{110}{22}=5
$$

Now, suppose the fruit fly counting problem resulted in a curved function below.

The two points when graphed form a secant.
Def: A secant is a line that intersects a curve in at least 2 points.

The slope of the secant here is $\frac{\Delta p}{\Delta t}$ which is the average rate of change of the number of flies.

Suppose we wanted to know the exact rate of change on day 23. If we backed the $2^{\text {nd }}$ point closer and closer to day 23 and found the slope, we would have a good indicator on the rate of change on day 23 (also called the instantaneous rate of change).

To the right is a table of the 4 secants as we go from 45 days back to 23 days:
Eventually, the point will end up at P. The line that intersect the curve only at P would be called the tangent (the solid line with arrow pointing at it). The slope of this line would be the instantaneous rate of change of the curve at P. The slope is found using two points $A(9,0)$ and $B(32,250)$

$$
m=\frac{250-0}{32-9}=\frac{250}{23}=10.87 \mathrm{flies} / \mathrm{day}
$$

As $Q \rightarrow P$, the average growth rates for increasingly smaller time intervals approach the slope of the tangent to the curve at P. Therefore the slope of tangent line is the rate of change on day 23 .

Def: The rate of change of $y=f(x)$ at $x=a$ is the slope of the tangent line to the curve at $x=a$.
So how do you find a tangent to a curve $y=f(x)$?

Ex. Find the slope of the parabola $y=x^{2} @ x=2$

- So, to find the tangent to a curve $y=f(x)$ at a point $(a, f(a))$, we use a similar procedure.

Def: Slope of a Curve at a Point
The slope of the curve $y=f(x)$ at a point $(a, f(a))$ is the number

$$
m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided the limit exists

- The tangent to the curve at P is the line through P with this slope

Ex. Let $f(x)=\frac{1}{x}$
(a) Find the slope of the curve at $x=a$.
(b) Where does the slope $=-\frac{1}{4}$?
(c) What happens to the tangent to the curve at $\left(a, \frac{1}{a}\right)$ for different values of a ? Solution:

Def: The normal line to a curve at a point is the line perpendicular to the line tangent to the curve.

Ex. Write an equation of the normal to the curve $f(x)=4-x^{2}$ at $x=1$

Def: Speed

Let $y=f(t)$ be the position function of an object in motion. Its instantaneous speed at any time t is the instantaneous rate of change of position with respect to time at t.

$$
\text { Speed }=\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}
$$

Ex. Find the speed of the rock falling if the position function is $f(x)=16 t^{2}$ at time $t=1$.

