Unit 3
 Congruence \& Proofs

Lesson 1: Introduction to Triangle Proofs

Opening Exercise

Using your knowledge of angle and segment relationships from Unit 1, fill in the following:

Definition/Property/Theorem	Diagram/Key Words	Statement
Definition of Right Angle		
Definition of Angle Bisector		
Definition of Segment Bisector		
Definition of Perpendicular		
Definition of Midpoint		
Angles on a Line		
Angles at a Point		
Angles Sum of a Triangle		
Vertical Angles		

Example 1

We are now going to take this knowledge and see how we can apply it to a proof. In each of the following you are given information. You must interpret what this means by first marking the diagram and then writing it in proof form.
a. Given: D is the midpoint of $\overline{A C}$

Statements	Reasons
$1 . D$ is the midpoint of $\overline{A C}$	1. Given
2.	2.

b. Given: $\overline{B D}$ bisects $\overline{A C}$

Statements	Reasons
$1 . \overline{B D}$ bisects $\overline{A C}$	1. Given
2.	2.

c. Given: $\overline{B D}$ bisects $\angle A B C$

Statements	Reasons
1. $\overline{B D}$ bisects $\angle A B C$	1. Given
2.	2.

d. Given: $\overline{B D} \perp \overline{A C}$

Statements	Reasons
$1 . \overline{B D} \perp \overline{A C}$	1. Given
2.	2.
3.	3.

Example 2

Listed below are other useful properties we've discussed that will be used in proofs.

Property / Postulate	In Words	Statement
Addition Postulate	Equals added to equals are equal.	
Subtraction Postulate	Equals subtracted from equals are equal.	
Multiplication Postulate	Equals multiplied by equals are equal.	
Division Postulate	Equals divided by equals are equal.	
Partition Postulate	The whole is equal To the sum of its parts.	
Substitution	A quantity may be substituted for an equal quantity.	Anything is equal to itself
Reflexive		

The two most important properties about parallel lines to remember:
1.
2.

Homework

Given the following information, mark the diagram and then state your markings in proof form.

1. Given: $\overline{A C}$ bisects $\angle B C D$

Statements	Reasons
1. $\overline{A C}$ bisects $\angle B C D$	1.Given
2.	2.

2. Given: E is the midpoint of $\overline{A B}$

Statements	Reasons
$1 . E$ is the midpoint of $\overline{A B}$	1.Given
2.	2.

3. Given: $\overline{C D} \perp \overline{A B}$

Statements	Reasons
$1 . \overline{C D} \perp \overline{A B}$	1. Given
2.	2.
3.	3.

4. Given: $\overline{C E}$ bisects $\overline{B D}$

Statements	Reasons
$1 . \overline{C E}$ bisects $\overline{B D}$	1.Given
2.	2.

Lesson 2: Congruence Criteria for Triangles - SAS

Opening Exercise

In Unit 2 we defined congruent to mean there exists a composition of basic rigid motions of the plane that maps one figure to the other.

In order to prove triangles are congruent, we do not need to prove all of their corresponding parts are congruent. Instead we will look at criteria that refer to fewer parts that will guarantee congruence.

We will start with:

Side-Angle-Side Triangle Congruence Criteria (SAS)

- Two pairs of sides and the included angle are congruent

Using these distinct triangles, we can see there is a composition of rigid motions that will map $\triangle A^{\prime} B^{\prime} C^{\prime}$ to $\triangle A B C$.

Step 1: Translation

Step 3: Reflection

Example 1

What if we had SAS criteria for two triangles that were not distinct? Consider the following two cases and determine the rigid motion(s) that are needed to demonstrate congruence.

Case	Diagram	Rigid Motion(s) Needed
Shared Side		
Shared Vertex		

Two properties to look for when doing triangle proofs:

Vertical Angles

Reflexive Property
 (Common Side)

Examples

2. Given: $\angle L N M \cong \angle L N O, \overline{M N} \cong \overline{O N}$
a. Prove: $\triangle L M N \cong \triangle L O N$

b. Describe the rigid motion(s) that would map $\triangle L O N$ onto $\triangle L M N$.
3. Given: $\angle H G I \cong \angle J I G, H G \cong J I$
a. Prove: $\triangle H G I \cong \triangle J I G$

b. Describe the rigid motion(s) that would map $\triangle J I G$ onto $\Delta H G I$.
4. Given: $\overline{A B} \square \overline{C D}, \overline{A B} \cong \overline{C D}$
a. Prove: $\triangle A B D \cong \triangle C D B$

b. Describe the rigid motion(s) that would map $\triangle C D B$ onto $\triangle A B D$.
5. Given: $\overline{S U}$ and $\overline{R T}$ bisect each other
a. Prove: $\triangle S V R \cong \triangle U V T$

b. Describe the rigid motion(s) that would map $\triangle U V T$ onto $\triangle S V R$.
6. Given: $\overline{J M} \cong \overline{K L}, \overline{J M} \perp \overline{M L}, \overline{K L} \perp \overline{M L}$
a. Prove: $\triangle J M L \cong \triangle K L M$

b. Describe the rigid motion(s) that would map $\triangle J M L$ onto $\triangle K L M$.

Homework

1. In order to use SAS to prove the following triangles congruent, draw in the missing labels:
a

b.

2. Given: $\angle 1 \cong \angle 2, \overline{B C} \cong \overline{D C}$
a. Prove: $\triangle A B C \cong \triangle A D C$

b. Describe the rigid motion(s) that would map $\triangle A D C$ onto $\triangle A B C$.
3. Given: $K M$ and $J N$ bisect each other
a. Prove: $\triangle J K L \cong \triangle N M L$

b. Describe the rigid motion(s) that would map $\triangle N M L$ onto $\triangle J K L$.

Lesson 3: Base Angles of Isosceles Triangles

Opening Exercise

Given: $\triangle R S T$ is isosceles with $\angle R$ as the vertex, $\overline{S Y} \cong \overline{T Z}$

Prove: $\Delta R S Y \cong \triangle R T Z$

Example 1

You will need a compass and a straightedge
We are going to prove that the base angles of an isosceles triangle are congruent!
Given: Isosceles $\triangle A B C$ with $\overline{A B} \cong \overline{A C}$
Goal: To prove $\angle B \cong \angle C$

Step 1: \quad Construct the angle bisector of the vertex \angle.
Step 2: $\triangle A B C$ has now been split into two triangles. Prove the two triangles are \cong.

Step 3: Identify the corresponding sides and angles.

Step 4: What is true about $\angle B$ and $\angle C$?

Step 5: What types of angles were formed when the angle bisector intersected $\overline{B C}$? What does this mean about the angle bisector?

Once we prove triangles are congruent, we know that their corresponding parts (angles and sides) are congruent. We can abbreviate this is in a proof by using the reasoning of:

CPCTC (Corresponding Parts of Congruent Triangles are Congruent).

To Prove Angles or Sides Congruent:

1. Prove the triangles are congruent (using one of the above criteria)
2. States that the angles/sides are congruent because of CPCTC.

To Prove Midpoint/Bisect/Perpendicular/Parallel:

1. Prove the triangles are congruent (using one of the above criteria)
2. State that the necessary angles/sides are congruent because of CPCTC.
3. State what you are trying to prove using def. of midpoint/def. of bisect/etc.

Example 2

Given: $\triangle J K L$ is isosceles, $\overline{K X} \cong \overline{L Y}$
Prove: $\triangle J X Y$ is isosceles

Homework

1. Given: Isosceles $\triangle A B C$ with $\angle A$ as the vertex angle D is the midpoint of $\overline{B C}$
Prove: $\triangle A C D \cong \triangle A B D$

2. Given: $\overline{B A} \cong \overline{C A}, \overline{A X}$ is the angle bisector of $\angle B A C$ Prove: $\angle A B X \cong \angle A C X$

Lesson 4: Congruence Criteria for Triangles - ASA and SSS

Opening Exercise

You will need a compass and a straightedge

1. Given: $\triangle A B C$ with $\angle B \cong \angle C$

Goal: To prove $\overline{B A} \cong \overline{C A}$

Step 1: Construct the perpendicular bisector to $\overline{B C}$.
Step 2: $\quad \triangle A B C$ has now been split into two triangles. Prove $\overline{B A} \cong \overline{C A}$.

2. In the diagram, $\triangle A B C$ is isosceles with $\overline{A C} \cong \overline{A B}$. In your own words, describe how the properties of rigid motions can be used to show $\angle B \cong \angle C$.

There are 5 ways to test for triangle congruence.
In lesson 1 we saw that we can prove triangles congruent using SAS. We proved this using rigid motions. Here's another way to look at it:
http://www.mathopenref.com/congruentsas.html

Today we are going to focus on two more types:

Angle-Side-Angle Triangle Congruence Criteria (ASA)

- Two pairs of angles and the included side are congruent

To prove this we could start with two distinct triangles. We could then translate and rotate one to bring the congruent sides together like we did in the SAS proof (see picture to the right).

As we can see, a reflection over $A B$ would result in the triangles being mapped onto one another, producing two congruent triangles.

http://www.mathopenref.com/congruentasa.html

Side-Side-Side Triangle Congruence Criteria (SSS)

- All of the corresponding sides are congruent

Without any information about the angles, we cannot just perform a reflection as we did in the other two proofs. But by drawing an auxiliary line, we can see that two isosceles triangles are formed, creating congruent base angles and therefore, $\angle B \cong \angle B^{\prime}$.

We can now perform a reflection, producing two congruent triangles.
http://www.mathopenref.com/congruentsss.html

Exercises

Prove the following using any method of triangle congruence that we have discussed. Then identify the rigid motion(s) that would map one triangle onto the other.

1. Given: M is the midpoint of $\overline{H P}, \angle H \cong \angle P$

Prove: $\triangle G H M \cong \triangle R P M$

2. Given: $\overline{A B} \cong \overline{A C}, \overline{X B} \cong \overline{X C}$

Prove: $\overline{A X}$ bisects $\angle B A C$

Example 1

Given: Circles with centers A and B intersect at C and D.
Prove: $\angle C A B \cong \angle D A B$

Example 2

Given: $\angle J \cong \angle M, \overline{J A} \cong \overline{M B}, \overline{J K} \cong \overline{M L}$
Prove: $\overline{K R} \cong \overline{L R}$

Homework

Prove the following using any method of triangle congruence that we have discussed. Then identify the rigid motion(s) that would map one triangle onto the other.

1. Given: $\angle A \cong \angle D, \overline{A E} \cong \overline{D E}$

Prove: $\triangle A E B \cong \triangle D E C$

2. Given: $\overline{B D} \cong \overline{C D}, E$ is the midpoint of $\overline{B C}$

Prove: $\angle A E B \cong \angle A E C$

Lesson 5: Congruence Criteria for Triangles - AAS and HL

Opening Exercise

Write a proof for the following question. When finished, compare your proof with your partner's.

Given: $\overline{D E} \cong \overline{D G}, \overline{E F} \cong \overline{G F}$
Prove: $\overline{D F}$ is the angle bisector of $\angle E D G$

We have now identified 3 different ways of proving triangles congruent. What are they?

Does this mean any combination of 3 pairs of congruent sides and/or angles will guarantee congruence?

Let's try another combination of sides and angles:

Angle-Angle-Side Triangle Congruence Criteria (AAS)

- Two pairs of angles and a side that is not included are congruent

To prove this we could start with two distinct triangles.

If $\angle B \cong \angle E$ and $\angle C \cong \angle F$, what must be true about $\angle A$ and $\angle D$? Why?

Therefore, AAS is actually an extension of which triangle congruence criterion?

Let's take a look at two more types of criteria:

Angle-Angle-Angle (AAA)

- All three pairs of angles are congruent
http://www.mathopenref.com/congruentaaa.html
Does AAA guarantee triangle congruence? Draw a sketch demonstrating this.

Side-Side-Angle (SSA)

- Two pairs of sides and a non-included angle are congruent http://www.mathopenref.com/congruentssa.html

Does SSA guarantee triangle congruence? Draw a sketch demonstrating this.

There is a special case of SSA that does work, and that is when dealing with right triangles. We call this Hypotenuse-Leg triangle congruence.

Hypotenuse-Leg Triangle Congruence Criteria(HL)

- When two right triangles have congruent hypotenuses and a pair of congruent legs, then the triangles are congruent.

If we know two sides of a right triangle, how could we find the third side?

Therefore, HL is actually an extension of which triangle congruence criterion?

In order to use HL triangle congruence, you must first state that the triangles are right triangles!

Exercises

Prove the following using any method of triangle congruence that we have discussed. Then identify the rigid motion(s) that would map one triangle onto the other.

1. Given: $\overline{A D} \perp \overline{B D}, \overline{B D} \perp \overline{B C}, \overline{A B} \cong \overline{C D}$

Prove: $\triangle A B D \cong \triangle C D B$
2. Given: $\overline{B C} \perp \overline{C D}, \overline{A B} \perp \overline{A D}, \angle 1 \cong \angle 2$

Prove: $\triangle B C D \cong \triangle B A D$

Homework

In 1-4, mark the appropriate congruence markings to use the method of proving that is stated:

1. SAS

2. ASA

3. AAS

4. HL

Opening Exercise

Triangle proofs summary. Let's see what you know!
List the 5 ways of proving triangles congruent:
1.
2.
3.
4.
5.

What two sets of criteria CANNOT be used to prove triangles congruent:
1.
2.

In order to prove a pair of corresponding sides or angles are congruent, what must you do first?

What is the abbreviation used to state that corresponding parts (sides or angles) of congruent triangles are congruent?

Exercises

Prove the following using any method of triangle congruence that we have discussed.

1. Given: $\begin{aligned} \overline{A B} & \cong \overline{C D} \\ \overline{B C} & \cong \overline{D A}\end{aligned}$

Prove: $\triangle A D C \cong \triangle C B A$

2. Given: $\overline{N Q} \cong \overline{M Q}$
$\overline{P Q} \perp \overline{N M}$
Prove: $\triangle P Q N \cong \triangle P Q M$

3. Given: $\angle 1 \cong \angle 2, \angle A \cong \angle E$,
C is the midpoint of $\overline{A E}$ Prove: $\overline{B C} \cong \overline{D C}$

4. Given: $\overline{B D}$ bisects $\angle A D C$

Prove: $\overline{A B} \cong \overline{\angle C}$

5. Given
$\overline{A D}$ bisects $\overline{B E}$ $A B \| D E$
Prove: $\quad \triangle A B C \cong \triangle D E C$

6. Given: $P A \perp A R, P B \perp B R, \overline{A R} \cong \overline{B R}$ Prove: $P R$ bisects $\angle A P B$

Homework

1. Given: $\overline{A B} \| \overline{C D}, \overline{A B} \cong \overline{C D}$

Prove: $\triangle A B D \cong \triangle C D B$

2. Given: $\overline{C D} \perp \overline{A B}, \overline{C D}$ bisects $\overline{A B}, \overline{A C} \cong \overline{B C}$

Prove: $\triangle A C D \cong \triangle B C D$

Lesson 7: Triangle Congruency Proofs II

Prove the following using any method of triangle congruence that we have discussed.

1. Given: $\overline{A B} \perp \overline{B C}, \overline{B C} \perp \overline{D C}$
$\overline{D B}$ bisects $\angle A B C$
$\overline{A C}$ bisects $\angle D C B$
$\overline{E B} \cong \overline{E C}$
Prove: $\triangle B E A \cong \triangle C E D$

2. Given: $\overline{A B} \perp \overline{B C}, \overline{D E} \perp \overline{E F}, \overline{B C} \square \overline{E F}, \overline{A F} \cong \overline{D C}$ Prove: $\triangle A B C \cong \triangle D E F$

3. Given: $\overline{A D} \perp \overline{D R}, \overline{A B} \perp \overline{B R}$

$$
\overline{A D} \cong \overline{A B}
$$

Prove: $\angle A R D \cong \angle A R B$

4. Given: $\overline{X J} \cong \overline{Y K}, \overline{P X} \cong \overline{P Y}, \angle Z X J \cong \angle Z Y K$ Prove: $\overline{J Y} \cong \overline{K X}$

5. Given: $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4$

Prove: $\overline{A C} \cong \overline{B D}$

Homework

1. Given: $\overline{B F} \perp \overline{A C}, \overline{C E} \perp \overline{A B}$

$$
\overline{A E} \cong \overline{A F}
$$

Prove: $\triangle A C E \cong \triangle A B F$

2. Given: $\overline{J K} \cong \overline{J L}, \overline{J X} \cong \overline{J Y}$

Prove: $\overline{K X} \cong \overline{L Y}$

Lesson 8: Properties of Parallelograms

Opening Exercise

Based on the diagram pictured below, answer the following:

1. If the triangles are congruent, state the congruence.
2. Which triangle congruence criterion guarantees they are congruent?
3. Side $T G$ corresponds with which side of $\triangle M Y J$?

Vocabulary

Define	Diagram
Parallelogram	

Using this definition of parallelograms and our knowledge of triangle congruence, we can prove the following properties of parallelograms:

- Opposite sides are congruent
- Opposite angles are congruent
- Diagonals bisect each other
- One pair of opposite sides are parallel and congruent

Example 1

We are going to prove the following sentence:
If a quadrilateral is a parallelogram, then its opposite sides and angles are equal in measure.

Given:

Diagram:

Prove:

Proof:

Example 2

Now that we have proven that opposite sides and angles of a parallelogram are congruent, we can use that it on our proofs!

We are going to prove the following sentence:
If a quadrilateral is a parallelogram, then the diagonals bisect each other.
Given:
Diagram:
Prove:

Proof:

Example 3

We are going to prove the following sentence:
If the opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

Given:
Prove:

Proof:

Homework

Prove the following sentence:
If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

Given:
Prove:

Proof:

Diagram:

Lesson 9: Properties of Parallelograms II

Opening Exercise

Draw a diagram for each of the quadrilaterals listed and draw in congruence markings where you believe they exist.

Parallelogram

Rectangle

Rhombus

Square

Family of Quadrilaterals

Many of the quadrilaterals listed in the Opening Exercise share some of the same properties. We can look at this as a family:

The quadrilaterals at the bottom have all of the properties of the figures listed above it. Based on this, determine if the following are true or false. If it is false, explain why.

1. All rectangles are parallelograms.
2. All parallelograms are rectangles.
3. All squares are rectangles.
4. All rectangles are squares.

	Parallelogram	Rhombus	Rectangle	Square	Trapezoid
2 Pairs opp. Sides parallel					
Opposite sides \cong					
Opposite angles \cong					
Consecutive angles supplementary					
Diagonals bisect each other					
4 sides					
4 \cong angles perpendicular					
Diagonals perp					
Diagonals bisect opp. Angles					
Diagonals \cong One pair of parallel sides					

Distance Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Use to show if sides or diagonals are congruent
Slope Formula: $m=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Used to show if sides parallel or perpendicular (same slope $=$ parallel opposite reciprocal slopes $=$ perpendicular $)$

Midpoint Formula: $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Use to show if the diagonals bisect each other (same midpoint means diagonals bisect each other)

Algebra HIJK is a rectangle. Find the value of x and the length of each diagonal.

1. $H J=4 x$ and $I K=7 x-12$
2. $H J=x+40$ and $I K=5 x$

Determine the most precise name for each quadrilateral.
3

4.

5.

6.

Algebra Find the values of the variables. Then find the side lengths.
7. square $W X Y Z$

9. rectangle $O R S T$

8. rhombus $A B C D$

10. square $L M N O$

11. Solve using a paragraph proof.

Given: Rectangle $D V E O$ with diagonals $\overline{D E}$ and $\overline{O V}$
Prove: $\triangle O V E \cong \triangle D E V$

Example 1

Prove the following sentence:
If a parallelogram is a rectangle, then the diagonals are equal in length.
Given:
Diagram:

Prove:

Proof:

Example 2

Prove the following sentence:
If a parallelogram is a rhombus, the diagonals intersect perpendicularly.
Given:
Diagram:

Prove:

Proof:

Homework

1. Given: Rectangle $R S T U, M$ is the midpoint of $R S$ Prove: $\triangle U M T$ is isosceles

2. Given: Square $A B C S \cong$ Square EFGS

Prove: $\triangle A S R \cong \triangle E S R$

Lesson 10: Mid-segment of a Triangle

Opening Exercise

Using your knowledge of the properties of parallelograms, answer the following questions:

1. Find the perimeter of parallelogram $A B C D$. Justify your solution.

2. If $A C=34, A B=26$ and $B D=28$, find the perimeter of $\triangle C E D$. Justify your solution.

Vocabulary

Mid-segment	Diagram

Example 1

You will need a compass and a straightedge

We are going to construct a mid-segment.
Steps:

1. Construct the midpoints of $A B$ and $A C$ and label them as X and Y, respectively.
2. Draw mid-segment $X Y$.

Compare $\angle A X Y$ to $\angle A B C$ and compare $\angle A Y X$ to $\angle A C B$. Without using a protractor, what would you guess the relationship between these two pairs of angles is?

What are the implications of this relationship?

Properties of Mid-segments

- The mid-segment of a triangle is parallel to the third side of the triangle.
- The mid-segment of a triangle is half the length of the third side of the triangle.

Exercises

Apply what your know about the properties of mid-segments to solve the following:

1. a. Findx.
b. Find the perimeter of $\triangle A B C$

2. Find x and y.

3. Find x.

Problem

$\overline{A B}$ is a midsegment of $\triangle G E F$. What is the value of $x ? 2 A B=G F$

$$
\begin{aligned}
2(2 x) & =20 \\
4 x & =20 \\
x & =5
\end{aligned}
$$

Exercises

Find the length of the indicated segment.

1. $A C$

2. $T U$

3. $\boldsymbol{S U}$

4. MO
5. $\boldsymbol{G H}$
6. JK

Algebra In each triangle, $\overline{A B}$ is a midsegment. Find the value of x.
7.

8.

9.

10.

11.

12.

Example 2

We are now going to prove the properties of mid-segments.

Given: $X Y$ is a mid-segment of $\triangle A B C$
Prove: $X Y \| B C$ and $X Y=\frac{1}{2} B C$

$\frac{\text { Statements }}{\text { 1. } X Y \text { is a mid-segment of } \triangle A B C}$
2. X is the midpoint of $A B$
Y is the midpoint of $A C$
3. $A X \cong B X$ and $A Y \cong C Y$
4. Extend $X Y$ to point G so that $Y G=X Y$ Draw GC
5. $\angle A Y X \cong \angle C Y G$
6. $\triangle A Y X \cong \triangle C Y G$
7. $\angle A X Y \cong \angle C G Y, A X \cong C G$
8. $B X \cong C G$
9. $A B \| C G$
10. $B X G C$ is a parallelogram
*11. $X Y \| B C$
12. $X G \cong B C$
13. $X G=X Y+Y G$
14. $X G=X Y+X Y$
15. $B C=X Y+X Y$
16. $B C=2 X Y$
*17. $X Y=\frac{1}{2} B C$

1. Given
2. A mid-segment joins the midpoints
3.

4.Auxiliary Lines
5.
6.
7.
8. Substitution
9.
10. One pair of opp. sides are \square and \cong
11. In a \bigsqcup, opposite sides are \square
12. In a \bigsqcup, opposite sides are \cong
13.
14. Substitution
15.
16. Substitution
17.

Homework

1. Find the perimeter of $\triangle E F G$.
2. Find and label all of the missing sides and angles.

3. $W X$ is a mid-segment of $\triangle A B C, Y Z$ is a mid-segment of $\triangle C W X$ and $B X=A W$.
a. What can you conclude about $\angle A$ and $\angle B$?

Explain why.

b. What is the relationship in length between $Y Z$ and $A B$?

Lesson 11: Points of Concurrency

Opening Exercise

The midpoints of each side of $\Delta R S T$ have been marked by points X, Y, and Z.

a. Mark the halves of each side divided by the midpoint with a congruency mark. Remember to distinguish congruency marks for each side.
b. Draw mid-segments $X Y, Y Z$, and $X Z$. Mark each mid-segment with the appropriate congruency mark from the sides of the triangle.
c. What conclusion can you draw about the four triangles within $\triangle R S T$? Explain why.
d. State the appropriate correspondences between the four triangles within $\triangle R S T$.

In Unit 1 we discussed two different points of concurrency (when 3 or more lines intersect in a single point).

Let's review what they are!

Circumcenter

- the point of concurrency of the 3 perpendicular bisectors of a triangle Sketch the location of the circumcenter on the triangles pictured below:

Incenter

- the point of concurrency of the 3 angle bisectors of a triangle

Sketch the location of the incenter on the triangles pictured below:

Example 1

You will need a compass and a straightedge
Construct the medians for each side of the triangle pictured below. A median is a segment connecting a vertex to the midpoint of the opposite side.

Vocabulary

- The point of intersection for 3 medians is called the \qquad .
- This point is the center of gravity of the triangle.

We will use http://www.mathopenref.com/trianglecentroid.html to explore what happens when the triangle is right or obtuse. Sketch the location of the centroid on the triangles below:

Example 2

You will need a compass and a straightedge
Construct the altitudes for each side of the triangle pictured below. An altitude is a segment connecting a vertex to the opposite side at a right angle. This can also be used to describe the height of the triangle.

Vocabulary

- The point of intersection for 3 altitudes is called the \qquad .

We will use http://www.mathopenref.com/triangleorthocenter.html to explore what happens when the triangle is right or obtuse. Sketch the location of the orthocenter on the triangles below:

Homework

Ty is building a model of a hang glider using the template below. To place his supports accurately, Ty needs to locate the center of gravity on his model.

a. Use your compass and straightedge to locate the center of gravity on Ty's model.
b. Explain what the center of gravity represents on Ty's model.

Lesson 12: Points of Concurrency II

Opening Exercise

Complete the table below to summarize what we did in Lesson 11. Circumcenter has been filled in for you.

Point of Concurrency	Types of Segments	What this type of line or segment does	Located Inside or Outside of the Triangle?
Circumcenter	Perpendicular Bisectors	Forms a right angle and cuts a side in half	Both; depends on the type of triangle
Incenter			
Centroid			
Orthocenter			

Which two points of concurrency are located on the outside of an obtuse triangle?

What do these types have in common?

Example 1

A centroid splits the medians of a triangle into two smaller segments. These segments are always in a $2: 1$ ratio.

Label the lengths of segments $D F, G F$ and $E F$ as x, y and z respectively. Find the lengths of $C F$, $B F$ and $A F$.

Exercises

1. In the figure pictured, $D F=4, B F=16$, and $G F=10$. Find the lengths of:
a. CF
b. EF
c. $\quad A F$

2. In the figure at the right, $E F=x+3$ and $B F=5 x-9$. Find the length of $E F$.

3. In the figure at the right, $D C=15$. Find $D F$ and $C F$.

We can now use medians and altitudes in triangle proofs!
Here's how it looks:

Given: $\overline{B D}$ is the median of $\triangle A B C$

Statements	Reasons
$1 . \overline{B D}$ is the median of $\triangle A B C$	1. Given
2.	2.
3.	3.

Given: $\overline{B D}$ is the altitude of $\triangle A B C$

Statements	Reasons
$1 . \overline{B D}$ is the altitude of $\triangle A B C$	1. Given
2.	2.
3.	3.
4.	4.

Example 2

Given: $\overline{B D}$ is the median of $\triangle A B C, \overline{B D} \perp \overline{A C}$
Prove: $\angle A \cong \angle C$

Homework

1. In the figure pictured, $D F=3, B F=14$, and $G F=8$.

Find the lengths of:
a. $C F$
b. $E F$
c. $A F$

2. In the figure at the right, $G F=2 x-1$ and $A F=6 x-8$. Find the length of $G A$.

3. Given: $\overline{B D}$ is the altitude of $\triangle A B C, \angle A B D \cong \angle C B D$

Prove: $\triangle A B D \cong \triangle C B D$

